
Copyright 2018 Carnegie Mellon University. All rights reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS MATERIAL IS FURNISHED ON AN “AS-IS” BASIS WITH NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, ANY WARRANTY WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT, OR THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. The United States Government has Unlimited Rights in this material as defined by DFARS 252.227-7013.

The text and illustrations in this material are licensed by Carnegie Mellon University under a Creative Commons Attribution 4.0 International

 HYPERLINK "https://creativecommons.org/licenses/by/4.0/" License.

The Creative Commons license does not extend to logos, trade marks, or service marks of Carnegie Mellon University.
[image: image1.wmf]
Workbook for
 Baseline Process Exercise

	[image: image2.png]

	

Managing TSP Teams

The Software Engineering Institute (SEI)

is a federally funded research and development center

sponsored by the U.S. Department of Defense and

operated by Carnegie Mellon University.

This material is approved for public release.

Distribution is limited by the Software Engineering Institute to attendees.

Managing TSP Teams

Baseline Process Exercise

Overview

	Exercise Overview
	The exercise includes the following topics.

	Section
	See Page

	Exercise Objectives
	3

	Exercise Instructions
	3

	PSP0 Process Scripts
	4

	Scenario for Assignment 1A
	6

	PSP0 Forms and Instructions
	7

	Exercise

Objectives
	The PSP is the foundation for the TSP.

This exercise provides

· an understanding of the baseline process, PSP0

· familiarity with the basic measurement forms used in the PSP

Similar measures and forms are used in the TSP.

	Exercise

Instructions
	Review the PSP0 scripts so that you understand each phase. Then read the scenario for JD, a PSP student, who is doing assignment 1A. Using the data from this scenario, complete the Time Log and the time in phase information on the Project Plan Summary for PSP0.

Note that the Defect Log and the defect injected and defect removed areas of the Project Plan Summary have been completed for you. If you are uncertain how to fill in the form, refer to the form instructions or ask an instructor for guidance.

This page intentionally left blank

PSP0 Process Script

	Phase Number
	Purpose
	To guide you in developing module-level programs

	
	Entry Criteria
	• Problem description

• PSP0 Project Plan Summary form

• Time and Defect Recording Logs

• Defect Type Standard

• Stop watch (optional)

	1
	Planning
	• Produce or obtain a requirements statement.

• Estimate the required development time.

• Enter the plan data in the Project Plan Summary form.

• Complete the Time Recording Log.

	2
	Development
	• Design the program.

• Implement the design.

• Compile the program and fix and log all defects found.

• Test the program and fix and log all defects found.

• Complete the Time Recording Log.

	3
	Postmortem
	Complete the Project Plan Summary form with actual time, defect, and size data.

	
	Exit Criteria
	• A thoroughly tested program

• Completed Project Plan Summary form with estimated and actual data

• Completed Defect and Time Recording Logs

PSP0 Planning Script

	Phase Number
	Purpose
	To guide the PSP planning process

	
	Entry Criteria
	• Problem description

• Project Plan Summary form

• Time Recording Log

	1
	Program Requirements
	• Produce or obtain a requirements statement for the program.

• Ensure that the requirements statement is clear and unambiguous.

• Resolve any questions.

	2
	Estimate Resources
	Make your best estimate of the time required to develop this program.

	
	Exit Criteria
	• Documented requirements statement

• Completed Project Plan Summary form with estimated development time data

• Completed Time Recording Log

PSP0 Development Script

	Phase Number
	Purpose
	To guide the development of small programs

	
	Entry Criteria
	• Requirements statement

• Project Plan Summary form with planned development time

• Time and Defect Recording Logs

• Defect Type Standard

	1
	Design
	• Review the requirements and produce a design to meet them.

• Record time in Time Recording Log.

	2
	Code
	• Implement the design.

• Record in the Defect Recording Log any requirements or design defects found.

• Record time in Time Recording Log.

	3
	Compile
	• Compile the program until error-free.

• Fix all defects found.

• Record defects in Defect Recording Log.

• Record time in Time Recording Log.

	4
	Test
	• Test until all tests run without error.

• Fix all defects found.

• Record defects in Defect Recording Log.

• Record time in Time Recording Log.

	
	Exit Criteria
	• A thoroughly tested program

• Completed Defect and Time Recording Logs

PSP0 Postmortem Script

	Phase Number
	Purpose
	To guide the PSP postmortem process

	
	Entry Criteria
	• Problem description and requirements statement

• Project Plan Summary form with planned development time

• Completed Time Recording Log

• Completed Defect Recording Log

• A tested and running program

	1
	Defects Injected
	• Determine from the Defect Recording Log the number of defects injected in each PSP0 phase.

• Enter this number under Defects Injected–Actual on the Project Plan Summary form.

	2
	Defects Removed
	• Determine from the Defect Recording Log the number of defects removed in each PSP0 phase.

• Enter this number under Defects Removed–Actual on the Project Plan Summary form.

	3
	Time
	• Review the completed Time Recording Log.

• Enter the total time spent in each PSP0 phase in the Actual column of the Project Plan Summary form.

	
	Exit Criteria
	• A fully tested program

• Completed Project Plan Summary form

• Completed Defect and Time Recording Logs

Scenario for Assignment 1A

	JD Scenario for Assignment 1A
	JD begins work on assignment 1A [8:00] by reviewing the requirements in the assignment package including the test requirements to be sure he understands them. He copies the requirements to his note pad. Then, based on the data presented on past student performance and JD’s feeling about his own performance, he estimates this assignment will take 3 hours and writes this on his note pad [8:06].

After taking a break for some coffee, JD starts to design the program [8:10]. He sketches out a diagram of the linked list structure, identifies the routines he’ll need for handling the linked list and for computing the mean and standard deviation. JD moves on to coding [8:31]. While working on coding, JD is interrupted by a classmate who doesn’t understand how to get started. JD spends 10 minutes explaining how to use the PSP0 process forms and then gets back to coding. JD finishes coding all the routines, checks to make sure he hasn’t missed anything [9:44] and fetches a fresh cup of coffee before compiling.

JD compiles the program [9:56] and gets an error message, missing semicolon. Looking at the compiler output, JD sees where the missing semicolon belongs and fixes the source code. JD re-compiles the program and gets a new error message, undeclared identifier [9:58]. Surprised, since he thought he declared this identifier, JD searches through the source code and discovers that the identifier he declared had an ‘_’ in it and this one didn’t. He fixes the error then quickly scans the rest the source code and finds two more places where he left out the ‘_’ and also fixes them [10:01]. JD again re-compiles the program and gets another error message, incorrect parameter type [10:02]. JD studies the code for a minute, sees the error and fixes the source code [10:03]. JD again re-compiles the program and gets an error message at the end of the program, unmatched begin [10:05]. After reviewing the program logic for a few minutes, JD spots where the missing end belongs and fixes the source code [10:08]. JD re-compile the program and this time there are no compile errors [10:09].

JD loads the program and begins executing the 1st test case [10:10]. The program prompts JD for the input data file name and JD types in the file name but nothing happens [10:11]. JD invokes the debugger and traces the program execution and discovers it is in an infinite loop. He studies the source code for the loop and spots the problem, a pointer was not incremented within the loop [10:22]. JD corrects the source code, re-compiles the program and begins executing the 1st test case again. This time the program outputs some results but the print format is wrong so JD can’t tell if they’re correct [10:23]. JD fixes the print format [10:25] and re-tries the 1st test case [10:26], the format is OK now but the answers are wrong. JD reviews the program logic and looks at some variables with the debugger. After studying the code and the results, JD realizes his initial design of the standard deviation was flawed and it needs to be rewritten [10:43]. JD rewrites the routine and re-compiles it [10:51]. There is one compile error, JD left out another semicolon so he quickly corrects the defect and recompiles the program [10:52] and this time there are no errors. JD re-executes the 1st test case and this time the results are good [10:54]. JD executes the next two test cases and both give the correct results [10:57].

JD finds his Plan Summary form and begins filling it in [10:58], it takes him 13 minutes to complete the Plan Summary.

Time Recording Log

	Student
	
	Date
	

	Instructor
	
	Program #
	

	
	
	
	

	Date
	Start
	Stop
	Interruption

Time
	Delta

Time
	Phase
	Comments

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Time Recording Log Instructions

	Purpose
	• This form is for recording the time spent in each project phase.

• These data are used to complete the Project Plan Summary form.

	General
	• Record all the time you spend on the project.

• Record the time in minutes.

• Be as accurate as possible.

• If you need additional space, use another copy of the form.

	Header
	Enter the following:

• Your name

• Today’s date

• The instructor’s name

• The number of the program

• If you are working on a non-programming task, also enter a job description in the Program # field.

	Date
	Enter the date when the entry is made.

	Example
	10/18/93

	Start
	Enter the time when you start working on a task.

	Example
	8:20

	Stop
	Enter the time when you stop working on that task.

	Example
	10:56

	Interruption Time
	• Record any interruption time that was not spent on the task and the reason for the interruption.

• If you have several interruptions, enter their total time.

	Example
	37 - took a break

	Delta Time
	Enter the clock time you actually spent working on the task, less the interruption time.

	Example
	From 8:20 to 10:56, less 37 minutes or 119 minutes.

	Phase
	Enter the name or other designation of the phase or step being worked on.

	Example
	Planning, code, test, and so on

	Comments
	Enter any other pertinent comments that may later remind you of any unusual circumstances regarding this activity.

	Example
	Had a compiler problem and had to get help.

	Important
	It is important to record all worked time. If you forget to record the starting, stopping, or interruption time for a task, promptly enter your best estimate of the time.

PSP0 Project Plan Summary

	Student
	
	Date
	

	Program
	Calculate mean and standard deviation
	Program #
	1A

	Instructor
	
	Language
	Pascal

	Time in Phase (min.)
	Plan
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	
	
	
	
	

	 Design
	
	
	
	
	
	
	

	 Code
	
	
	
	
	
	
	

	 Compile
	
	
	
	
	
	
	

	 Test
	
	
	
	
	
	
	

	 Postmortem
	
	
	
	
	
	
	

	 Total
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Defects Injected
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	0
	
	0
	
	0

	 Design
	
	
	1
	
	1
	
	10

	 Code
	
	
	8
	
	8
	
	80

	 Compile
	
	
	0
	
	0
	
	0

	 Test
	
	
	1
	
	1
	
	10

	 Total Development
	
	
	10
	
	10
	
	100

	
	
	
	
	
	
	
	

	Defects Removed
	
	
	Actual
	
	To Date
	
	To Date %

	 Planning
	
	
	0
	
	0
	
	0

	 Design
	
	
	0
	
	0
	
	0

	 Code
	
	
	0
	
	0
	
	0

	 Compile
	
	
	6
	
	6
	
	60

	 Test
	
	
	4
	
	4
	
	40

	 Total Development
	
	
	10
	
	10
	
	100

	 After Development
	
	
	
	
	
	
	

PSP0 Project Plan Summary Instructions

	Purpose
	To hold the estimated and actual project data in a convenient and readily retrievable form

	Header
	Enter the following:

• Your name and today’s date

• The program name and number

• The instructor’s name

• The language you used to write the program

	Time in Phase
	• Under Plan, enter your original estimate of the total development time.

• Under Actual, enter the actual time in minutes spent in each development phase.

• Under To Date, enter the sum of the actual time and the To Date time from your most recently developed program.

• Under To Date %, enter the percentage of To Date time in each phase.

	Defects Injected
	• Under Actual, enter the number of defects injected in each phase.

• Under To Date, enter the sum of the actual number of defects injected in each phase and the To Date values from the most recently developed program.

• Under To Date %, enter the percentage of the To Date defects injected by phase.

	Defects Removed
	• Under Actual, enter the number of defects removed in each phase.

• Under To Date, enter the sum of the actual number of defects removed in each phase and the To Date values from the most recently developed program.

• Under To Date %, enter the percentage of the To Date defects removed by phase.

• After development, record any defects later found during program use, reuse, or modification.

This page intentionally left blank

Table C18 Defect Recording Log

Defect Types

10 Documentation
60 Checking

20 Syntax

70 Data

30 Build, Package
80 Function

40 Assignment
90 System

50 Interface
100 Environment

	Student
	JD Veloper
	Date
	1/24/94

	Instructor
	Humphrey
	Program #
	1A

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	1/24
	
	1
	
	20
	
	code
	
	comp
	
	2
	
	

	Description:
	 missing “;”

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	2
	
	20
	
	code
	
	comp
	
	1
	
	

	Description:
	left “_” out of identifier name

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	3
	
	20
	
	code
	
	comp
	
	1
	
	

	Description:
	left “_” out of identifier name

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	4
	
	20
	
	code
	
	comp
	
	1
	
	

	Description:
	left “_” out of identifier name

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	5
	
	50
	
	code
	
	comp
	
	1
	
	

	Description:
	wrong type in function call

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	6
	
	20
	
	code
	
	comp
	
	3
	
	

	Description:
	forgot “End” on loop statement

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	7
	
	80
	
	code
	
	test
	
	11
	
	

	Description:
	forgot to increment linked list pointer inside loop for mean

	calculation

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	8
	
	50
	
	code
	
	test
	
	2
	
	

	Description:
	print format incorrect, not enough digits

	

	

Table C18 Defect Recording Log

Defect Types

10 Documentation
60 Checking

20 Syntax

70 Data

30 Build, Package
80 Function

40 Assignment
90 System

50 Interface
100 Environment

	Student
	JD Veloper
	Date
	1/24/94

	Instructor
	Humphrey
	Program #
	1A

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	1/24
	
	9
	
	80
	
	design
	
	test
	
	27
	
	

	Description:
	std deviation design wrong, misunderstood summations

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	10
	
	20
	
	test
	
	test
	
	1
	
	9

	Description:
	missing “;”

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

	Date
	
	Number
	
	Type
	
	Inject
	
	Remove
	
	Fix Time
	
	Fix Defect

	
	
	
	
	
	
	
	
	
	
	
	
	

	Description:
	

	

	

Defect Recording Log Instructions

	Purpose
	• This form holds the data on each defect as you find and correct it.

• You use these data to complete the Project Plan Summary form.

	General
	• Record in this log all defects found in review, compile, and test.

• Record each defect separately and completely.

• If you need additional space, use another copy of the form.

	Header
	Enter the following:

• Your name

• Today’s date

• The instructor’s name

• The number of the program

	Date
	Enter the date when the defect was found.

	Number
	Enter the defect number.

For each program, this should be a sequential number starting with, for example, 1 or 001.

	Type
	Enter the defect type from the defect type standard in Table C20 (also summarized at the top of the log form).

Use your best judgment in selecting which type applies.

	Inject
	Enter the phase during which this defect was injected.

Use your best judgment.

	Remove
	Enter the phase during which the defect was removed.

This would generally be the phase during which you found the defect.

	Fix Time
	Enter your best judgment of the time you took to fix the defect.

This time can be determined by stop watch or by judgment.

	Fix Defect
	• If you injected this defect while fixing another defect, record the number of the improperly fixed defect.

• If you cannot identify the defect number, enter an X in the Fix Defect box.

	Description
	Write a succinct description of the defect that is clear enough to later remind you about the error and help you to remember why you made it.

Defect Type Standard

	Type Number
	Type Name
	Description

	10
	Documentation
	comments, messages

	20
	Syntax
	spelling, punctuation, typos, instruction formats

	30
	Build, Package
	change management, library, version control

	40
	Assignment
	declaration, duplicate names, scope, limits

	50
	Interface
	procedure calls and references, I/O, user formats

	60
	Checking
	error messages, inadequate checks

	70
	Data
	structure, content

	80
	Function
	logic, pointers, loops, recursion, computation, function defects

	90
	System
	configuration, timing, memory

	100
	Environment
	design, compile, test, or other support system problems

Exercise 5 March 2006
1
© 2006 by Carnegie Mellon University

